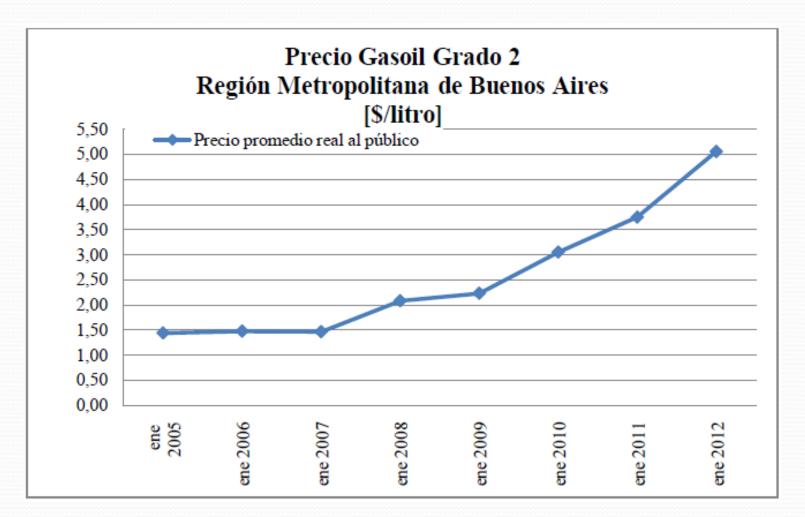
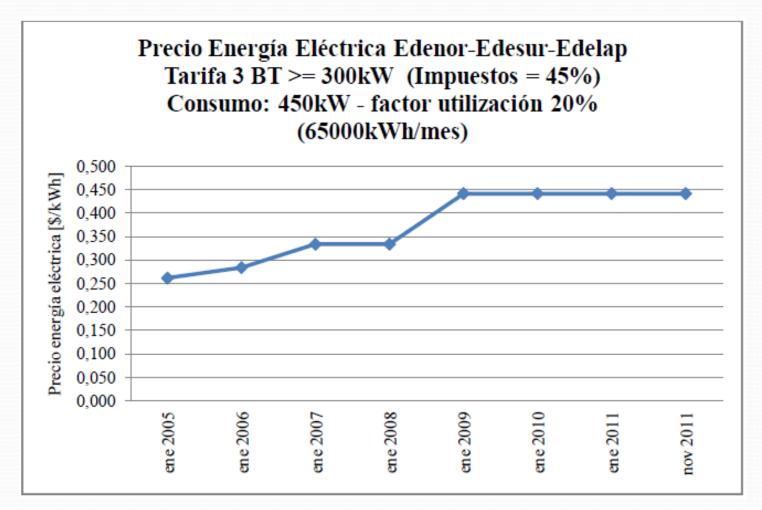

Diseño de ómnibus urbano con propulsión eléctrica a batería



Ventajas del ómnibus eléctrico

El vehículo eléctrico es de "cero emisiones".


- La energía eléctrica que consume puede ser generada a partir de recursos renovables.
- Hace un uso mas eficiente de la energía.

Evolución del precio del gasoil

Aumentó un 250% en 7 años.

Evolución del precio de la E. Eléctrica

Aumentó un 67% en 7 años.

Costos de la energía de tracción en el neumático

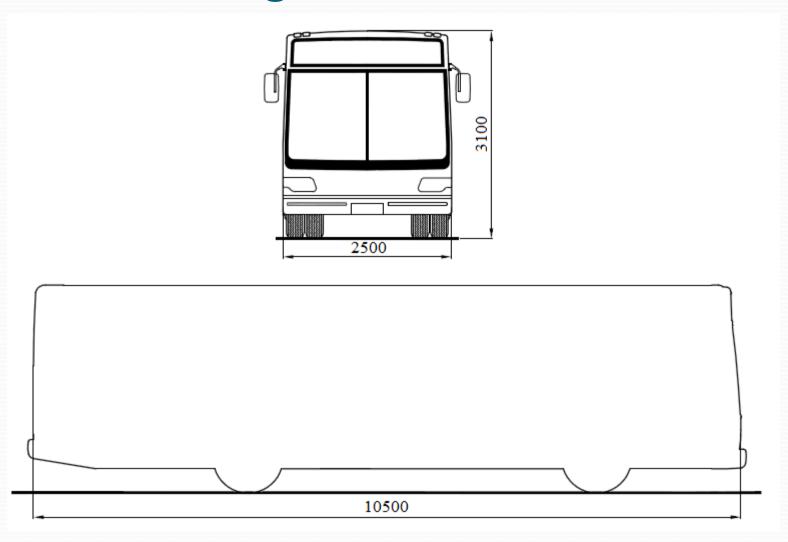
Tipo	unidad	Costo unitario [\$/unidad]	Energía unitaria [kWh/unidad]	Rendimiento aproximado	Precio de la energía en el neumático [\$/kWh]
Ómnibus diesel	litro	5,06	10,08	0,20	2,51
Ómnibus eléctrico	kWh	0,45	1	0,80	0,56

Considerando un rendimiento global del "combustible" al neumático:

Ómnibus diesel: 20%

Ómnibus eléctrico: 80%

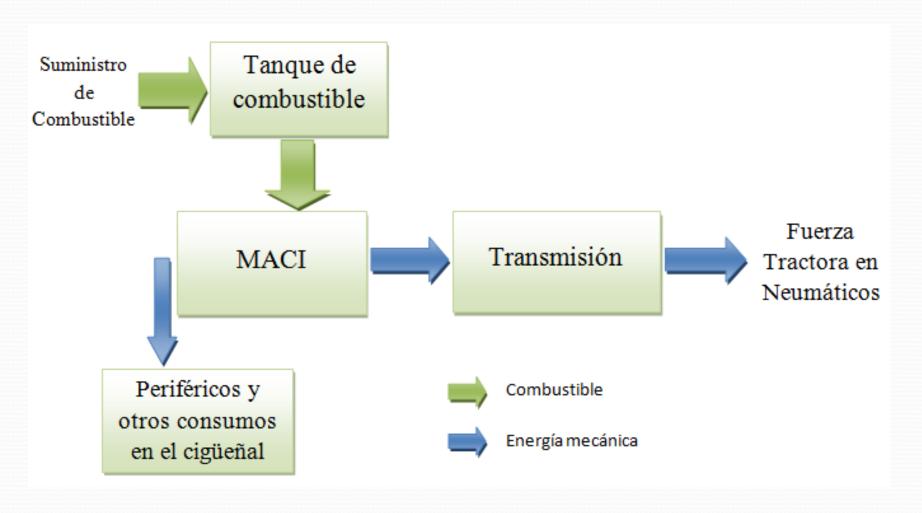
Características principales de diseño del ómnibus


- Velocidad máxima: 6oKm/h
- Autonomía: >30km
- Carrocería: Piso bajo ó low floor
- Eje delantero: Con dirección, para piso bajo, neumáticos simples
- Eje trasero: Con diferencial, neumáticos duales.
- Suspensión: Neumática

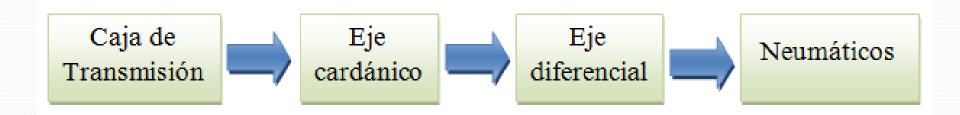
Estaciones de recarga ubicadas en los extremos del recorrido del ómnibus

Ejemplo: Sistema de recarga ómnibus eléctrico PROTERRA

Dimensiones generales del ómnibus



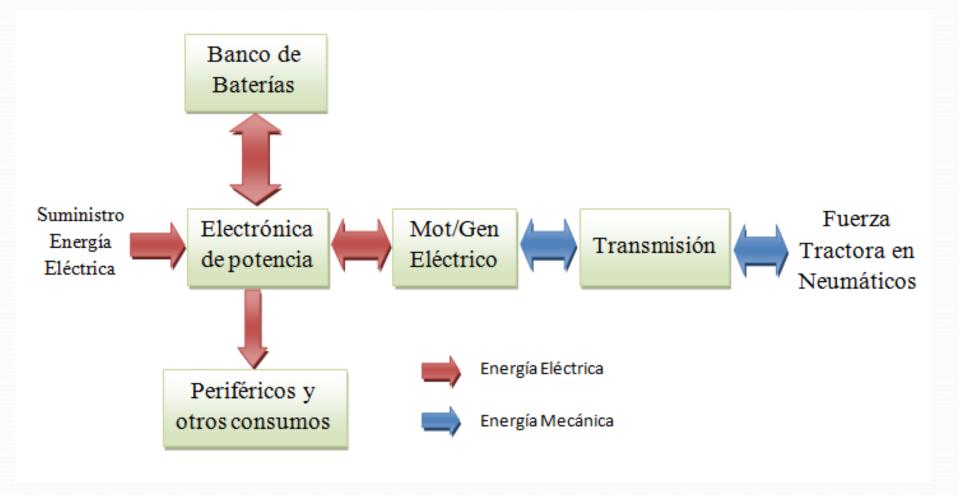
Pasos de diseño para la electrificación de un ómnibus diesel convencional


- Retirar los elementos del sistema de propulsión diesel.
- Seleccionar los elementos del sistema de propulsión eléctrico.

 Alimentar los consumos de energía del ómnibus extras al de propulsión.

Esquema del sistema de propulsión diesel convencional

Detalle de la transmisión del sistema de propulsión diesel


Características caja de trasmisión automática:

- Embrague hidráulico con convertidor de par
- 5 velocidades y marcha atras

Elementos del sistema de propulsión diesel que no se utilizan

- Motor alternativo de combustión interna (MACI).
- Tanque de combustible.
- Sistema de refrigeración del MACI.
- Sistema de admisión y escape del MACI.
- Caja de transmisión.
- Alternador.

Esquema del sistema de propulsión eléctrico

Elementos principales del sistema de propulsión eléctrico


Motor-generador eléctrico e inversor.

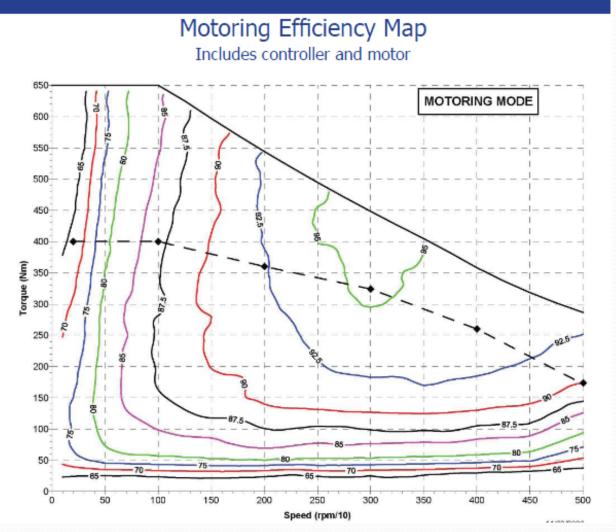
Banco de baterías.

Motor-generador eléctrico e inversor

PowerPhase® 150

for electric, hybrid electric, and fuel cell powered vehicles

Key Features:


- 650 Nm peak torque
- 150 kW peak, 100 kW continuous motor power
- 150 kW peak, 100 kW continuous generator power
- Full Power at 340-420 VDC

Características del motor e inversor

Dimensions				
Length	9.49 in	241 mm		
Diameter	15.94 in	405 mm		
Weight	200 lb	91 kg		
Performance				
Peak power	200 hp	150 kW		
Continuous power at 3,000 rpms	134 hp	100 kW		
Peak torque	480 lbf•ft	650 N•m		
Continuous torque	295 lbf∙ft	400 N•m		
Maximum speed	5000 RPM			
Maximum efficiency	95%			
Power density (based on 150 kW)	1.00 hp/lb	1.65 kW/kg		

Curva de par con rendimientos

PowerPhase® 150

Banco de baterías

- Compuesto por 3 packs en paralelo, de 16 baterías en serie cada uno.
- Batería utilizada:
 - Ion de litio con electrodos de nanocristales de litio y óxido de titanio.
 - Características: 24V 6oAh.
 - Carga total en menos de 10 minutos.
 - 360 A de carga y descarga continuos.

Detalle de las baterías

24 V 60 Ah Battery Module

NANO LITHIUM-TITANATE BATTERY MODULE

- · High power without sacrificing energy storage
- Ability to recover without capacity loss from a complete discharge
- Higher levels of operational abuse tolerance than existing batteries
- · Virtually maintenance free
- Rugged capabilities duty cycle, safety, long calendar and operational life
- Symmetrical C-rate charge/discharge ideal for regenerative braking applications

Características de las baterías

Performance Characteristics				
Voltage range	17.0 V – 27.5 V			
Nominal capacity	60 Ah			
Typical discharge energy (60 amp [1C rate] at 25°C, CCCV charge)	1,400 Wh			
Peak power (10 sec pulse 50% SOC, at 25°C) (discharge/charge)	21.9 kW/34.3 kW			
Energy density	106 Wh/I			
Power density	1,673 W/I			
Specific energy	51.9 Wh/kg			
Specific power	799 W/kg			
Internal charge impedance (10 sec DC pulse 50% SOC, at 25°C)	4 mΩ typical			
Internal discharge impedance (10 sec DC pulse 50% SOC, at 25°C)	3.8 mΩ typical			
Max continuous charge	360 A			
Max continuous discharge	360 A			
Pulse charge/discharge rate (10 sec pulse)	Up to 600 A max			

Características del banco de baterías

Capacidad: 69 kWh

Tensión: 384 VDC

Potencia carga/descarga continua: 414 kW

• Peso: 1316 kg

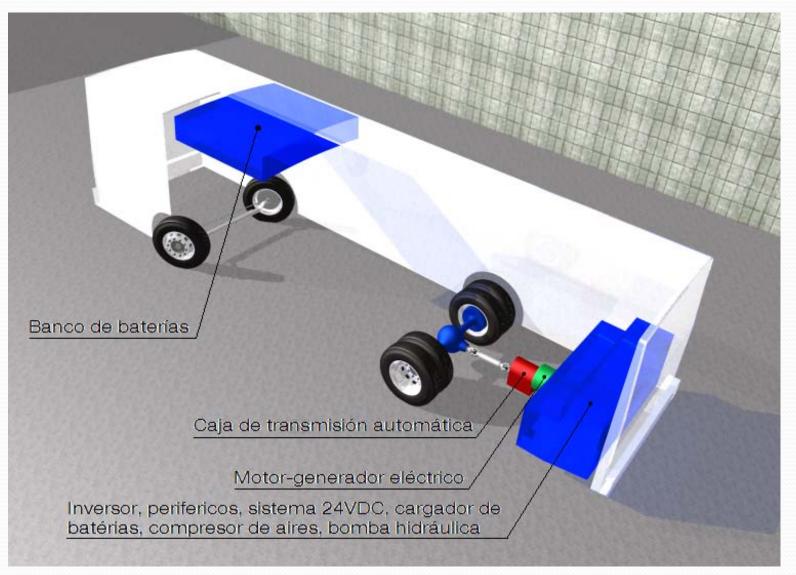
• Recarga total en menos de 10 minutos

Periféricos del motor eléctrico

Sistema de refrigeración del motor eléctrico e inversor

- Componentes principales:
 - Bomba de agua
 - Ventilador del radiador
- Impulsado por un motor eléctrico alimentado por un inversor de frecuencia variable

Otros consumos del ómnibus


Compresor de aire (frenos, suspensión, etc) y bomba hidráulica (dirección)

• Impulsados por un motor eléctrico alimentado por un inversor de frecuencia variable

Sistema eléctrico en 24VDC

 Baterías del plomo-acido en serie, con cargador desde el banco de baterías principal

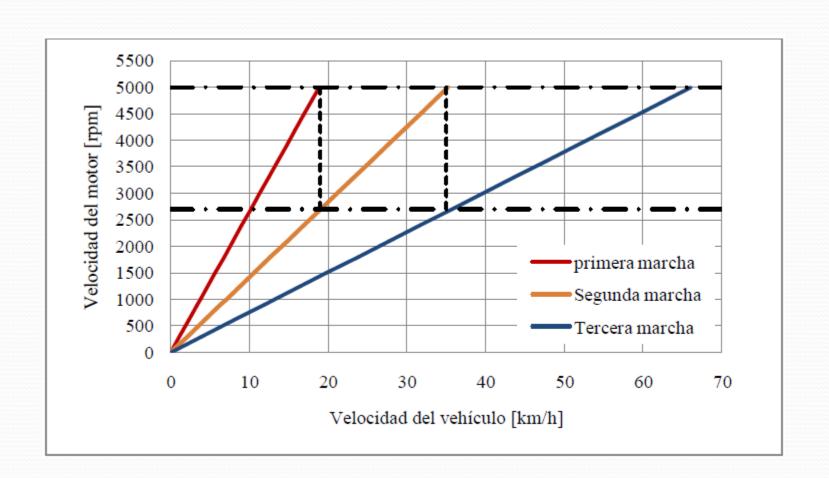
Ubicación de los elementos eléctricos

Componentes de la planta motriz

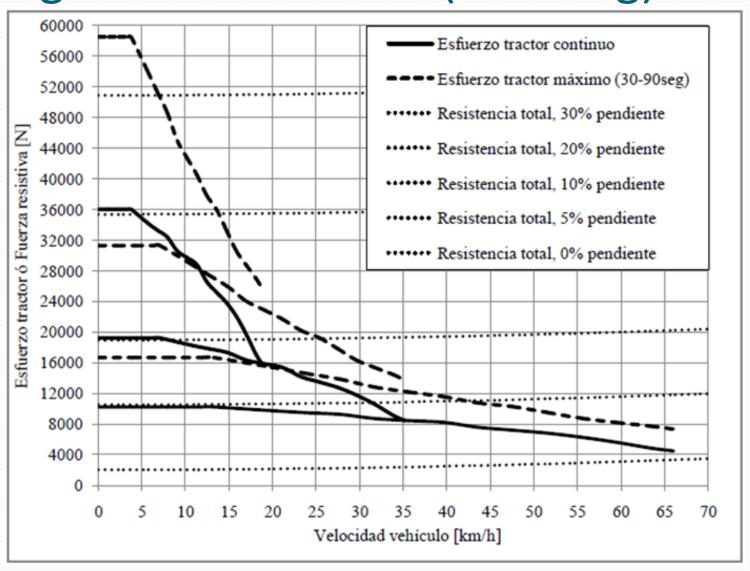
Componentes convencionales:

- Neumáticos
- Eje diferencial
- Eje cardánico

Componentes para la electrificación:


- Motor-generador eléctrico
- Caja de transmisión automática de 3 velocidades

Funciones de la planta motriz


 Transmitir par y velocidad a los neumáticos para tracción

- Recuperar energía eléctrica con frenado regenerativo
- Generar el par suficiente de arranque a los neumáticos en rampas
- Brindar la velocidad máxima de diseño del vehículo

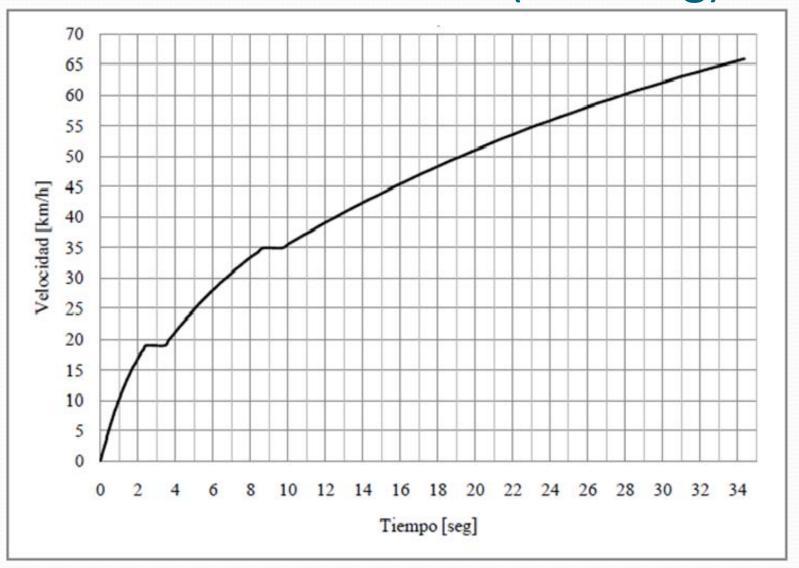
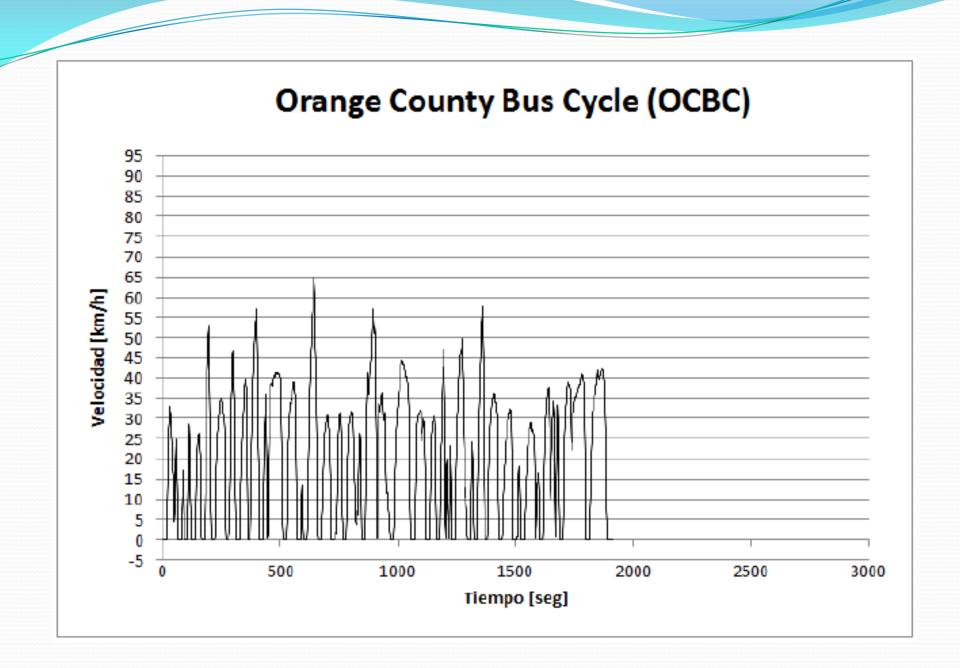
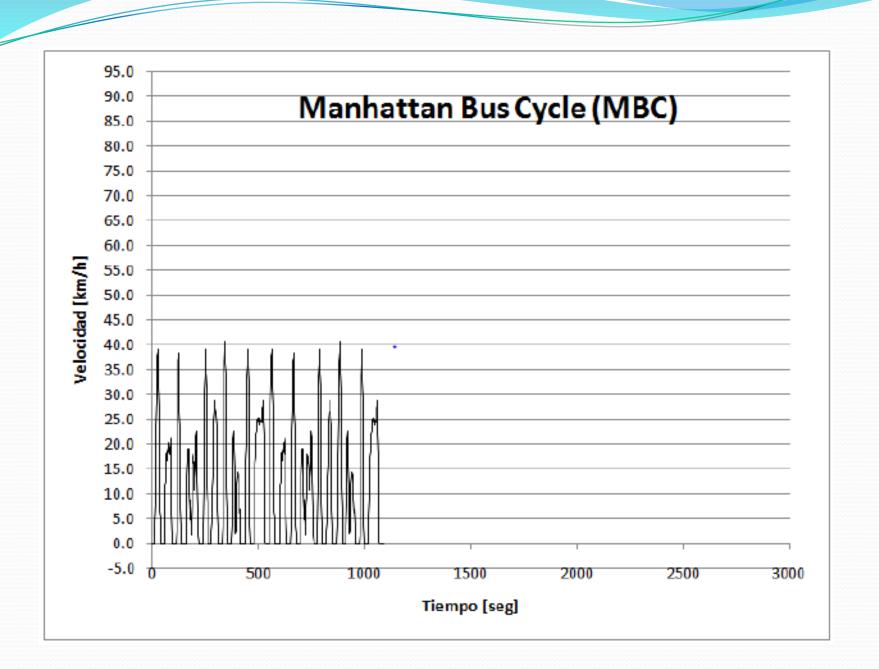
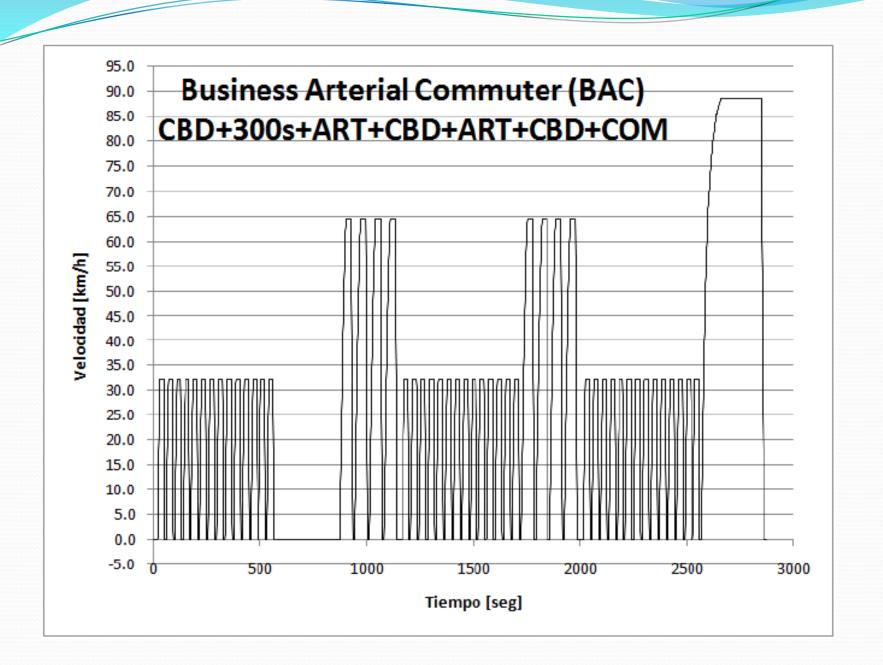

Velocidad del motor vs. velocidad del vehículo

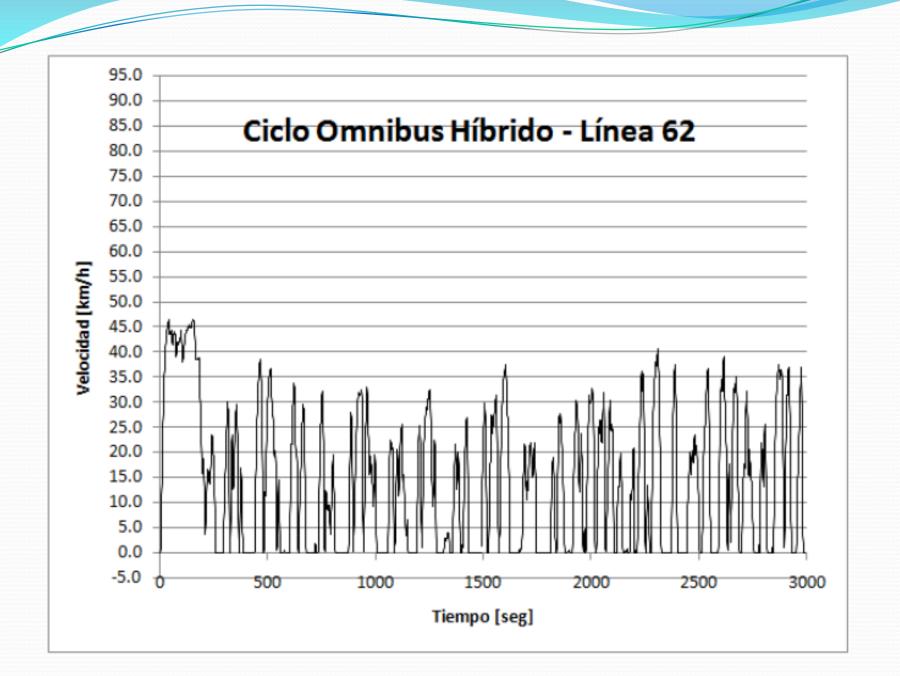
Diagrama de tracción (17325kg)

Aceleración del ómnibus (17325kg)

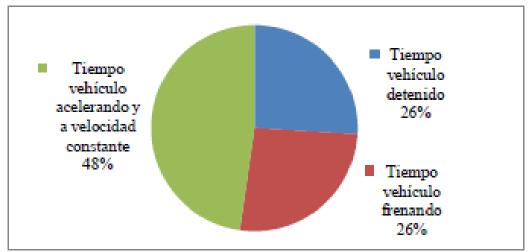

Requerimiento de energía para el transporte de un ómnibus urbano en ciclos de manejo


Fuerza impulsora:


• Fuerza de tracción en neumáticos

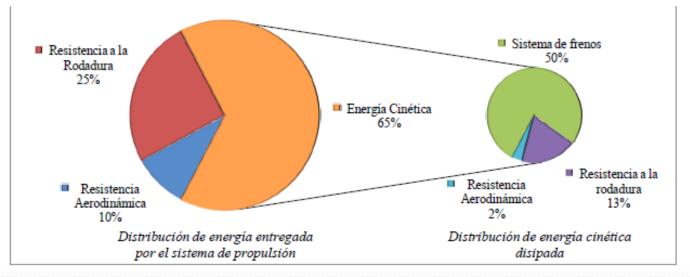

Fuerzas resistivas:

- Resistencia aerodinámica al avance
- Resistencia a la rodadura en neumáticos



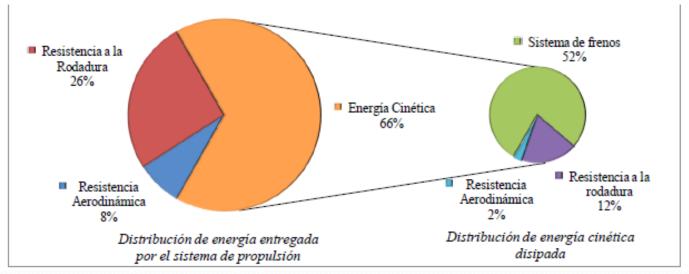
Características de los ciclos de manejo

Característica / Ciclo		MBC	BAC	CHIB	PROMEDIO
Velocidad promedio, V _{prom} [km/h]		11,0	27,9	12,3	17,8
Velocidad máxima [km/h]		40,7	88,5	46,5	60,3
Longitud del ciclo, D _{ciclo} [km]		3,3	22,3	16,3	13,1
Tiempo del ciclo, Tciclo [seg]		1089	2879	4761	2660
Aceleración máxima [m/s²]	1,8	2,1	1.0	1,6	1,6
Tiempo vehículo detenido		34,2%	24,1%	25,2%	26%
Tiempo vehículo frenando		28,5%	10,6%	32,4%	26%
Tiempo vehículo acelerando y a velocidad constante	45,8%	37,3%	65,3%	42,4%	48%

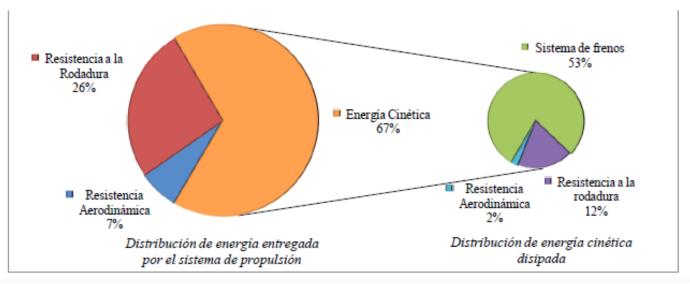


Características adoptadas del vehículo a analizar en los ciclos de manejo

- Peso total, tres variantes:
 - 1: 11400kg (20 pasajeros aprox.)
 - 2: 14900kg (70 pasajeros aprox.)
 - 3: 17325kg (máximo permitido según los ejes y suspensión)
- Coeficiente aerodinámico al avance: 0.88
- Área frontal: 7.1 m²
- Coeficiente de rodadura: 0.012


Resultado de los cálculos, PESO 1

Descripción / Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO
Peso del vehículo [kg]			11400		
Energía requerida para tracción en neumáticos, E ₇ [kWh/km]	0,982	1,138	1,075	0,826	1,005
Consumida para dar energía cinética al vehículo, E ₁	70%	78%	43%	69%	65%
Energía cinética disipada por la resistencia aerodinámica, E ₄	4%	2%	1%	3%	2%
Energía cinética disipada por la resistencia a la rodadura, E5	14%	14%	3%	19%	13%
Energía cinética disipada en procesos de frenado, E ₆	52%	62%	39%	47%	50%
Consumida por la resistencia aerodinámica, E2	7%	3%	25%	5%	10%
Consumida por la resistencia a la rodadura, E ₃	23%	19%	32%	26%	25%
Energía especifica requerida en tracción en neumáticos, E ₈ [Wh/km.kg]	0,086	0,100	0,094	0,072	0,088
Potencia media de tracción en neumáticos, E ₉ [kW]	20	13	30	10	18
Potencia máxima de tracción en neumáticos [kW]	124	149	130	86	122


Resultado de los cálculos, PESO 2

Descripción / Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO
Peso del vehículo [kg]			14900		
Energía requerida para tracción en neumáticos, E7 [kWh/km]	1,264	1,478	1,323	1,067	1,283
Consumida para dar energía cinética al vehículo, E ₁	71%	79%	46%	69%	66%
Energía cinética disipada por la resistencia aerodinámica, E ₄	3%	2%	1%	2%	2%
Energía cinética disipada por la resistencia a la rodadura, E5	15%	14%	3%	19%	12%
Energía cinética disipada en procesos de frenado, E ₆	53%	63%	42%	48%	52%
Consumida por la resistencia aerodinámica, E ₂	5%	2%	20%	4%	8%
Consumida por la resistencia a la rodadura, E ₃	24%	19%	34%	27%	26%
Energía especifica requerida en tracción en neumáticos, E ₈ [Wh/km.kg]	0,085	0,099	0,089	0,072	0,086
Potencia media de tracción en neumáticos, E ₉ [kW]	25	16	37	13	23
Potencia máxima de tracción en neumáticos [kW]	160	194	167	112	158

Resultado de los cálculos, PESO 3

Descripción / Ciclo	OCBC	MBC	BAC	СНІВ	PROMEDIO
Peso del vehículo [kg]			17325		
Energía requerida para tracción en neumáticos, E ₇ [kWh/km]	1,459	1,714	1,494	1,234	1,475
Consumida para dar energía cinética al vehículo, E ₁	72%	79%	47%	70%	67%
Energía cinética disipada por la resistencia aerodinámica, E ₄	3%	1%	1%	2%	2%
Energía cinética disipada por la resistencia a la rodadura, E5	15%	14%	3%	19%	12%
Energía cinética disipada en procesos de frenado, E ₆	54%	64%	43%	49%	53%
Consumida por la resistencia aerodinámica, E2	4%	2%	18%	3%	7%
Consumida por la resistencia a la rodadura, E ₃	24%	19%	35%	27%	26%
Energía especifica requerida en tracción en neumáticos, E ₈ [Wh/km.kg]	0,084	0.,099	0,086	0,071	0,085
Potencia media de tracción en neumáticos, E ₉ [kW]	29	19	42	15	26
Potencia máxima de tracción en neumáticos [kW]	185	225	192	130	183

Rendimiento global

Concepto:

Indica la proporción de energía que se destina para la propulsión del vehículo en relación a la energía suministrada al mismo.

$$Rendimiento \ global = \frac{Energía \ consumida \ en \ propulsión}{Energía \ total \ consumida}$$

Energía total consumida

Incluye:

- Energía consumida en la propulsión del ómnibus
- Energía consumida por los sistemas periféricos del sistema de propulsión (refrigeración, control, etc.)
- Energía consumida por otros consumos del ómnibus
 - Compresor de aire
 - Bomba hidráulica dirección
 - Sistema eléctrico de 24VDC

Ómnibus diesel

Se pretende:

 Calcular el consumo de combustible para verificar los cálculos en los ciclos de manejo.

Consideraciones:

• El sistema de propulsión diesel tiene un rendimiento global aproximado del 20% en manejo urbano.

Resultados ómnibus diesel, PESO 1

Descripción / Ciclo	OCBC	MBC	BAC	СНІВ	PROMEDIO			
Peso del vehículo [kg]	11400							
Potencia media de tracción en neumáticos [kW]	20	13	30	10	18			
Potencia máxima de tracción en neumáticos [kW]	124	149	130	86	122			
Energía consumida para tracción en neumático, E ₇ [kWh/km]	0,98	1,14	1,08	0,83	1,01			
Rendimiento global	20%	20%	20%	20%	20%			
Consumo de combustible [ltr/100km]	49	56	53	41	50			
Economía de combustible [km/ltr]	2,1	1,8	1,9	2,4	2,0			
Economía de combustible [MPG]	4,8	4,2	4,4	5,7	4,8			

Resultados ómnibus diesel, PESO 2

Descripción / Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO		
Peso del vehículo [kg]	14900						
Potencia media de tracción en neumáticos [kW]	25	16	37	13	23		
Potencia máxima de tracción en neumáticos [kW]	160	194	167	112	158		
Energía consumida para tracción en neumático, E ₇ [kWh/km]	1,26	1,48	1,32	1,07	1,28		
Rendimiento global del combustible al neumático	20%	20%	20%	20%	20%		
Consumo de combustible [ltr/100km]	63	73	66	53	64		
Economía de combustible [km/ltr]	1,6	1,4	1,5	1,9	1,6		
Economía de combustible [MPG]	3,8	3,2	3,6	4,4	3,7		

Resultados ómnibus diesel, PESO 3

Descripción / Ciclo	OCBC	MBC	BAC	СНІВ	PROMEDIO
Peso del vehículo [kg]			17	325	
Potencia media de tracción en					
neumáticos [kW]	29	19	42	15	26
Potencia máxima de tracción en					
neumáticos [kW]	185	225	192	130	183
Energía consumida para tracción en					
neumático, E ₇ [kWh/km]	1,46	1,71	1,49	1,23	1,48
Rendimiento global del combustible					
al neumático	20%	20%	20%	20%	20%
Consumo de combustible [ltr/100km]	72	85	74	61	73
Economía de combustible [km/ltr]	1,4	1,2	1,3	1,6	1,4
Economía de combustible [MPG]	3,3	2,8	3,2	3,8	3,3

Ómnibus eléctrico

Se pretende:

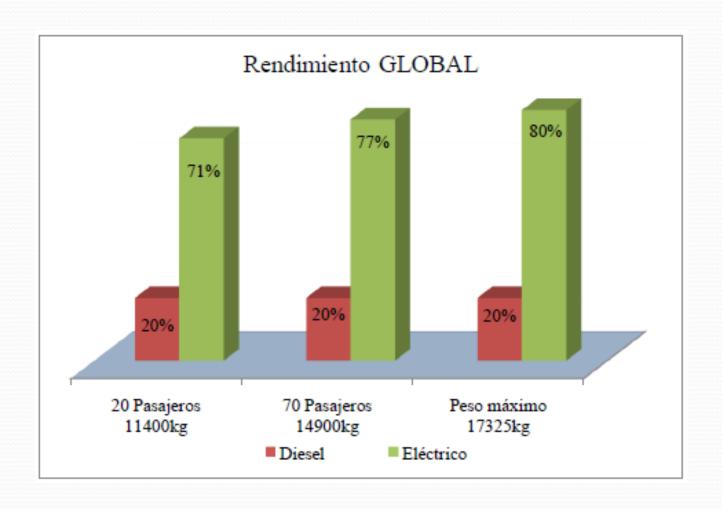
- Calcular el rendimiento global del sistema.
- Calcular el consumo equivalente de combustible

Consideraciones:

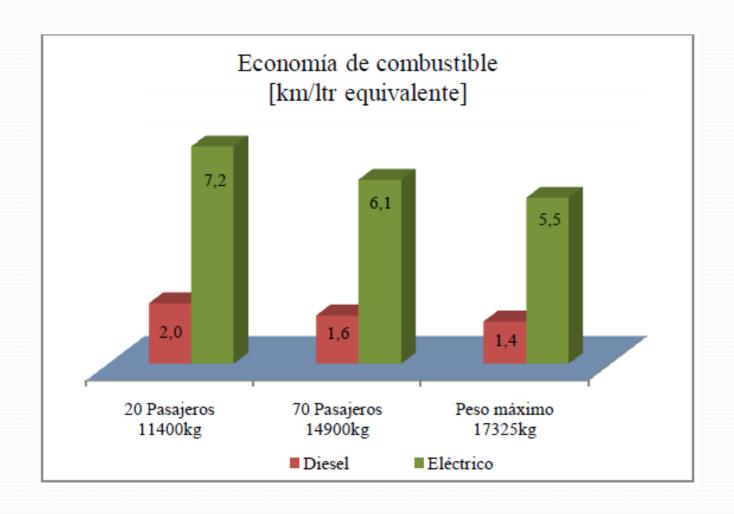
- Se calcularon los consumos de los sistemas periféricos y demás consumos del ómnibus.
- Se consideró el consumo de energía eléctrica en la entrada de la estación de recarga, desde la red.

Resultados ómnibus eléctrico, PESO 1

Descripción/Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO
Peso del vehículo			11400)	
Longitud del ciclo, D _{ciclo} [km]	10,52	3,32	22,34	16,32	13,13
Tiempo del ciclo, Tciclo [seg]	1909	1089	2879	4761	2660
Tiempo vehículo detenido	20%	34%	24%	25%	26%
Energía requerida para tracción en neumáticos, E ₇ [kWh/km]	0,98	1,14	1,08	0,83	1,01
Energía cinética disipada en procesos de frenado, E ₆	0,51	0,71	0,42	0,39	0,51
Energía consumida de las baterías para tracción, E ₁₀ [kWh/km]	1,23	1,42	1,34	1,03	1,26
Energía recuperada en baterías por frenado, E ₁₁ [kWh/km]	-0,36	-0,51	-0,31	-0,28	-0,37
Energía consumida de las baterías por periféricos motor, E ₁₂ [kWh/km]	0,08	0,12	0,05	0,12	0,08
Energía consumida de las baterías por compresor de aire y bomba hidráulica, E ₁₃ [kWh/km]	0,15	0,26	0,10	0,23	0,16
Energía consumida de las baterías por consumos en 24V, E ₁₄ [kWh/km]	0,06	0,12	0,05	0,10	0,08
TOTAL consumido de baterías,E ₁₅ [kWh/km]	1,15	1,40	1,24	1,21	1,21
Consumo de energía eléctrica para la carga, E ₁₆ [kWh/km]	1,30	1,59	1,40	1,37	1,41
Rendimiento Global	76%	72%	77%	60%	71%
Economía de combustible equivalente, Ec[km/ltr]	7,7	6,4	7,2	7,4	7,2
Economía de combustible, E _c [MPGe]	18,2	14,9	16,9	17,4	16,9


Resultados ómnibus eléctrico, PESO 2

Descripción/Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO
Peso del vehículo			14900		
Longitud del ciclo, D _{ciclo} [km]	10,52	3,32	22,34	16,32	13,13
Tiempo del ciclo, T _{ciclo} [seg]	1909	1089	2879	4761	2660
Tiempo vehículo detenido	20%	34%	24%	25%	26%
Energía requerida para tracción en neumáticos, E ₇ [kWh/km]	1,26	1,48	1,32	1,07	1,28
Energía cinética disipada en procesos de frenado, E6	0,67	0,94	0,56	0,52	0,67
Energía consumida de las baterías para tracción, E10 [kWh/km]	1,58	1,85	1,65	1,33	1,60
Energía recuperada en baterías por frenado, E ₁₁ [kWh/km]	-0,49	-0,68	-0,40	-0,37	-0,48
Energía consumida de las baterías por periféricos motor, E ₁₂ [kWh/km]	0,08	0,12	0,05	0,12	0,08
Energía consumida de las baterías por compresor de aire y bomba hidráulica, E ₁₃ [kWh/km]	0,15	0,26	0,10	0,23	0,16
Energía consumida de las baterías por consumos en 24V, E ₁₄ [kWh/km]	0,06	0,12	0,05	0,10	0,08
TOTAL consumido de baterías,E ₁₅ [kWh/km]	1,38	1,67	1,45	1,42	1,44
Consumo de energía eléctrica para la carga, E ₁₆ [kWh/km]	1,56	1,88	1,64	1,60	1,67
Rendimiento Global	81%	78%	81%	67%	77%
Economía de combustible equivalente, Ec[km/ltr]	6,5	5,4	6,1	6,3	6,1
Economía de combustible, E _c [MPGe]	15,2	12,6	14,4	14,8	14,3


Resultados ómnibus eléctrico, PESO 3

Descripción/Ciclo	OCBC	MBC	BAC	CHIB	PROMEDIO
Peso del vehículo			17325		
Longitud del ciclo, D _{ciclo} [km]	10,52	3,32	22,34	16,32	13,13
Tiempo del ciclo, T _{ciclo} [seg]	1909	1089	2879	4761	2660
Tiempo vehículo detenido	20%	34%	24%	25%	26%
Energía requerida para tracción en neumáticos, E ₇ [kWh/km]	1,46	1,71	1,49	1,23	1,48
Energía cinética disipada en procesos de frenado, E ₆	0,79	1,10	0,65	0,60	0,78
Energía consumida de las baterías para tracción, E10 [kWh/km]	1,82	2,14	1,87	1,54	1,84
Energía recuperada en baterías por frenado, E11 [kWh/km]	-0,57	-0,79	-0,47	-0,43	-0,57
Energía consumida de las baterías por periféricos motor, E ₁₂ [kWh/km]	0,08	0,12	0,05	0,12	0,08
Energía consumida de las baterías por compresor de aire y bomba hidráulica, E ₁₃ [kWh/km]	0,15	0,26	0,10	0,23	0,16
Energía consumida de las baterías por consumos en 24V, E ₁₄ [kWh/km]	0,06	0,12	0,05	0,10	0,08
TOTAL consumido de baterías,E ₁₅ [kWh/km]	1,54	1,85	1,60	1,56	1,59
Consumo de energía eléctrica para la carga, E ₁₆ [kWh/km]	1,74	2,09	1,81	1,77	1,85
Rendimiento Global	84%	82%	83%	70%	80%
Economía de combustible equivalente, Ec[km/ltr]	5,8	4,8	5,6	5,7	5,5
Economía de combustible, E _c [MPGe]	13,6	11,3	13,1	13,4	12,9

Resumen de resultados

Resumen de resultados

Autonomía del ómnibus eléctrico [km]

Carga	Autonomía Calculada	Autonomía prevista	Exceso de autonomía	Coeficiente de seguridad
20 Pasajeros: 11400kg	57	30	27	1,9
70 Pasajeros: 14900kg	48	30	18	1,6
Peso máximo: 17325kg	43	30	13	1,4

Costos insumos energéticos

Ómnibus diesel

Precio gasoil, enero 2012: 5,10 \$/litro

Consumo plena carga: 0,64 litros/km

• Costo de combustible: 3,26 \$/km

Ómnibus eléctrico

Precio energía eléctrica, enero 2012: 0,45 \$/kWh

Consumo plena carga: 1,67 kWh/km

Costo de combustible: 0,75 \$/km

Ómnibus de CERO EMISIONES

- No tiene gases de escape.
- Es mas silencioso que el ómnibus con MACI.
- Se eliminan los cambios de aceite del MACI.

Planta motriz

- Alta eficiencia del motor-generador eléctrico.
- Proporciona la aceleración y velocidad necesaria para el ómnibus.
- Potencia suficiente del motor en freno regenerativo.
- Bajo mantenimiento del motor-generador eléctrico.

Banco de baterías

- Elevada potencia de carga y descarga, superior al consumo del motor-generador.
- Capacidad suficiente para brindar una autonomía superior a los 43km.
- Tiempo de recarga total inferior a 10 minutos.
- Larga vida útil de las baterías.

Eficiencia y costos insumos

- Rendimiento global superior al 71%.
- Economía del combustible 260% mayor que el ómnibus diesel convencional.
- 77% menos de costos en insumos energéticos que el ómnibus diesel convencional.